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Samenvatting

Deze scriptie maakt deel uit van een onderzoek naar de implementatie van eenvoudige
goedkope sensoren in smart homes. Het uiteindelijke doel van een smart home is het
inperken van de steeds toenemende financiële druk op de maatschappij door de stijgende
kosten voor gezondheidszorg. Een smart home uitgerust met sensoren draagt hiertoe bij
door de patiënt een gecontroleerde omgeving te bieden, zonder dat permanent toezicht
door verzorgers nodig is.

Deze scriptie handelt over het implementeren van een artificieel brein die de data afkomstig
van de sensoren zal gaan combineren om zo te bepalen in welke situatie de patiënt zich
bevindt. Om de kostprijs van een smart home te drukken worden eenvoudige sensoren
gebruikt. Deze hebben op zich weinig waarde en bieden enkel basis informatie, doch
wanneer men meerdere van deze eenvoudige waardes combineert komt men toch tot een
goedkoop maar krachtig systeem. Het systeem stelt vast wat de patiënt doet, controleert
deze actie met behulp van andere sensoren en stuurt daarna indien nodig een waarschuwing
naar een zorgverlener al naargelang de situatie. Het systeem maakt gebruik van de reeds
bestaande EYE Reasoner, een forward-backward-forward chaining reasoner met een hoge
performantie. Deze reasoner zal van de sensordata gebruik maken om een set regels in te
vullen en te evalueren. Uit deze combinatie van data en regels kunnen nieuwe conclusies
worden getrokken, deze conclusies worden bij de originele data toegevoegd wat het mogelijk



maakt om activiteiten of noodsituaties te gaan detecteren. Dankzij de combinatie van
meerdere verschillende types sensoren en een reasoner is het ook mogelijk om een falende
sensor te gaan detecteren en rapporteren. Op die manier is het systeem ook gevrijwaard
van regelmatig onderhoud, wat opnieuw de patiënt ten goede komt.

Het systeem is ontworpen om autonoom te functioneren, zonder dat de patiënt in kwes-
tie daar hinder van ondervindt. In een ideaal geval zal de patiënt nooit weten dat het
systeem actief is, waardoor deze na verloop van tijd geen aandacht meer zal schenken
aan de aanwezigheid van de sensoren. Op die manier voelt de patiënt zich ook minder
gestigmatiseerd.

Trefwoorden

Reasoning, Semantic web, EYE, Euler, EulerSharp, Jena, Machine Learning, Logic, Heal-

thcare.
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Abstract— The last few decades, an alarming trend has come to the at-
tention of us all. While the increase in the world’s aging population is due
to better health services, there is little reason to cheer. As everyone lives
longer, but does not generate an income at higher age, the aging population
has become a very large burden to bear for the taxpayers. Aging people
need to be taken care of and this costs more and more time and money, ev-
ery year again. This thesis formulates a partial solution to this problem by
designing a usable and affordable smart home.
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I. INTRODUCTION

THE smart home has the ability to offer a controlled envi-
ronment for those people who are weakened, but can still

function normally during everyday tasks. A smart home is built
around three main components: a group of sensors, a commu-
nication system and a reasoning engine. The big upside of this
solution is that basic sensors are used which do not require com-
plicated installation procedures and thus can be implemented in
a normal existing home. This solves the graying problem par-
tially because people can remain at home longer in their trusted
environment in a safe and controlled way.

This thesis is a study about how to implement a reasoning en-
gine in a smart home. The comparison between different types
of reasoning methods and engines is made to determine which
type of reasoning suits the smart home application best. Once
the type of reasoning is chosen, a comparison between existing
reasoners is made to choose the correct one for this job. Af-
ter that a reasoner is implemented to simulate a working smart
home.

II. CHOOSING THE CORRECT TYPE OF REASONER

Reasoning on data has been around for quite some time now
and is ever growing in support and interest from the community.
The reasoning engines give the user a new way of processing
data automatically to some extent. The processing of data can
be done in many ways, some more successful than others. The
categorization of data is what helps the reasoner form new con-
clusions that did not literally exist, but where already there hid-
den away in the sensor data. Reasoners try to combine all sorts
of data in different ways to deduce new data that can be used as
a conclusion or as a subset of new data to reason further.

Reasoning techniques have their advantages and disadvan-
tages, these have been examined and summarized in this thesis
to be able to determine what type of reasoning would suit the
smart home project best. Reasoning can be done in two ways,
the logic can be predefined and filled in with the available sensor
data, or the machine can analyze the data and try to learn from it.
Predefined logic and machine learning can also be implemented

in many different ways. This thesis does an investigation in how
a few of these techniques work and what their down and up-
sides are. The examined techniques are: fuzzy logic, forward
and backward chaining, decision trees, support vector machines,
case-based reasoning and neural networks.

It soon became clear that machine learning is a very powerful
tool to use, but would take the machine a long time to train and
gather data causing the system not to be operational directly af-
ter deployment. Machine learning would also require the learn-
ing of complicated tasks per individual, because every human
has his own habits. This means that the data would not be able
to be ported to a different home, adding to the complexity, set up
time and affecting scalability in a negative way. Predefined logic
seemed to be less flexible and harder to set up, but after thorough
research this still seemed the best option for this project. Even-
tually the chaining based reasoning technique proved to be the
fastest and most reliable for this type of application. Once this
conclusion was formed, the EYE reasoner and the Jena project
have been tested and compared to each other in order to deter-
mine which was the best for implementation in this project.

Choosing the correct reasoner was key to maintain a reliable
and fast responding system without too many trade-offs. EYE
reasoner proved to be far quicker than the Jena framework, but
offers less features out of the box. Jena has more options to play
with in terms of in- and output of data, but these did not stand up
to the fact that EYE was much quicker and easier to implement.
Once EYE was chosen, research began on what rules would be
needed to make this system work.

III. DESIGNING THE RULES

The way a chaining based reasoner works is by trying to fill
in a set of rules with the data that has been made available to
it. The main implementation of these rules is to combine certain
fragments of data to try and deduce new data. As the rules de-
termine how the reasoner will work, they are the single most im-
portant part of a reasoning project. If the rules would be flawed
or incomplete, the project will not work even if the best reason-
ing engine is used. This also means that the design of the rules
is the hardest and by far the more time consuming part of this
thesis.

The ultimate goal of this all is to determine what the person is
currently doing and what state he is in. The first important task
that the reasoner has to fulfill, is to determine where the person
is located in the room. Because not all sensors are as easy to
work with, nor are they equally accurate, this proves to be quite
the challenge. The location information is collected at runtime
through the furniture, a camera and multiple pressure sensors
in the floor. The reasoner processes multiple values at once to



try and determine the exact position of a person in the room, ne-
glecting failing sensors in this process. Detecting the failure of a
sensor is never easy because the machine can not directly choose
which sensor would be faulty, since they are not all equally ac-
curate. There is never a real number to compare other sensors to,
as a person is able to move around and the conditions will never
all be the same causing some sensors to deviate more in certain
situations. The rules have some detection methods built in to
detect malicious data, they then make sure the malicious data is
left out of the calculations to ensure a more precise position de-
tection is possible. The next step in this process is to group the
data into one variable, this is done by introducing zones or hot
spots in the room where a person can be. This allows for some
tolerance should a sensor fail to be as precise as the others, but
still come close enough to be correct eventually. Labeling the
data into zones also makes it easier to reference to a position in
the reasoning process later on.

Once the position of the person has been successfully de-
tected, this location information is then combined with data
from appliances around the house. The combination of a loca-
tion and the appliances being used at this location, gives the rea-
soner the opportunity to detect which activity the person is doing
at that time. For instance watching TV, sleeping or cooking. To
be able to do this correctly, the sensors are once again joining
forces to aid the reasoner in forming a conclusion. The combi-
nation of some of the sensors also allows the system to form an
image about the situation in the room, for instance if the room is
dark or lit. This too is valuable information in the reasoning pro-
cess. The multi-sensor aspect of this project makes it possible to
check the values of sensors against each other, even if they have
no direct relation to each other. Because newly deduced data is
formed and is a part of a bigger cause, it is possible to compare
the value of a light sensor against the value of a pressure sensor
in a smart and inventive way.

As soon as the person’s current activity is detected, it is com-
bined with the appliance and room state information to try and
detect if unusual or dangerous conclusions can be formed. For
instance if a person would be sleeping, but he forgot to turn off
the stove, the person would be in imminent danger. The reasoner
will then signal a care taker or intervene automatically in order
to protect the person’s health.

IV. RESULTS

This thesis offers a look on existing reasoning techniques, ex-
amines them and reports their strengths and weaknesses. The
EYE reasoner came out on top when tested against Jena with an
impressive 63 times faster execution time. This speed advantage
can not be neglected and so the EYE reasoner was the favorite
by a big margin. The fact that EYE also seemed more durable in
bigger assignments was an added bonus and only acknowledged
the first tests.

The application itself is capable of profiling a situation in de-
tail. This not only means that it can tell you what the person is
doing, but also in what state the room is and how the appliances
are used at that time. The reasoner is able to form conclusions
based on this information to protect a person’s health.

The reasoner has the ability to signal a caretaker when the per-
son could be in danger, it does this by detecting issues with the

patient or the appliances used in the home. For instance when
a person fell asleep but left the stove on, this is a fire hazard
not to be left without proper action. The system also warns a
technician in case it detects that one of the sensors is malfunc-
tioning, but does continue operation as long as the malfunction
is there by ignoring the values that these sensors send out. The
system does keep checking these values against the others, so
that if the sensor is repaired, it will automatically be used again
by the system without the need for the technician to reconfigure
the system.

V. CONCLUSION

The end product of this thesis is a complete reasoning engine
with error detection and correction using a set of rules. This
system can aid in lowering the costs of health care by keeping
an eye on people who are in a state of needing assistance, but
are not dependent on constant supervision. The system works
completely autonomously but does have the ability to call in a
supervisor to check on the person in the home if the person’s
situation is far from ideal.
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Introduction

Enhanced living has been available to the public for over a decade now, usually in the

form of domotics applications designed to make living easier and more comfortable. In

these applications sensors and remote human input have been used to control or alter the

behavior of devices in and around the house. In a domotics application a sensor can be used

to detect if the plants have enough water, while another sensor monitors the temperature

in the living room and controls the heating accordingly. The possibilities are endless, but

usually consist of a range of independent, very simple systems designed to each complete

only one specific task, therefore none of them apply to the true meaning of a smart home.

The main difference between a domotics application and a smart home is the fact that

a smart housing project is not limited to enhancing the comfort of the individual living

in that house. A smart home will not use a single sensor to monitor the plants, but will

combine the power of multiple sensors to monitor the individual itself. To most people,

this would seem like a tremendous waste of money, but for the weak in our society, elderly

or sick people, it is a very welcome technology aiding in their welfare and allowing them to

live longer independently. As the healthcare industry is a resource-consuming machine that

runs on time, knowledge and manpower. These resources all have one thing in common,

they are very expensive. It is therefore wise to only use them when necessary and with

utmost care. What if it was possible to cut back on personnel costs, use some source of

knowledge to use manpower in a better and more efficient way, make a good evaluation of

the situation at hand without consuming too much time and do all of that without being

needlessly intrusive in a person’s private environment? This is where the smart home

comes into play. A great role model for the smart home on Belgian soil has always been

the “Living Tomorrow” project situated in Vilvoorde, Brussels [1]. Since 1995 F. Beli and
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P. Bongers have created multiple
”
Houses of the future” with multiple partners based on

the slogan:
”
How will we be living in the future”. Every five years a new house is built as

the technology evolves too quickly to adapt the house. Since the first version, the project

has expanded to contain a shop of the future, a senior flat and so much more.

The basic smart home consists of two primary features. It uses sensors like any other

domotics system and it implements logic to make decisions based on the data collected

from these sensors. The sensors in a smart home can measure temperature, light, sound

level and intensity, detect motion, pressure and many more aspects of the variable inputs

that a person encounters in his everyday life. Combining these sensors can make life easier,

but also safer. The safety aspect is key in the healthcare industry since a safer environment

costs less money on the long run.

Safety is very hard to comprehend because many different aspects of life have an influence

on a person’s safety, thus making it hard to detect when a person is safe or not. There

are some obvious reasons why a person could be in danger. A fire for instance can be life

threatening and can also be detected by a machine in an easy way. The real challenge

in providing a safe environment is to not only detect the obvious, but to concentrate on

a person’s behavior or more importantly, his lack of normal behavior. Using multiple

sensors can be of great value in situations where behavioral detection is key to knowing if

a person is safe or not. A machine can compare the values of multiple sensors and form a

conclusion based on what it knows about these variables, greatly increasing the certainty

when detecting the severity of a given situation. That machine can then notify the correct

person to check on the patient’s wellbeing, making it easier to spread the manpower over

multiple smart homes thus saving time and money.

The lack of normal behavior could also be signaled to the individual directly, aiding him

with some of his day-to-day tasks. For instance brushing teeth consists of taking a tooth-

brush, using toothpaste, brushing and so on. The system can follow the elder in those

tasks and remind them if they miss a step or do something in the wrong order. A good

example of a system capable of doing such a thing is the system researched by Jaeyong

Sung et al [2]. For a great overview of other examples and reviews of multiple technologies

used in smart homes, the paper written by Marie Chan [3] is the one to read. It features

many technologies, explains the state-of-the-art of them and also features a list of relevant

papers about these subjects.

The basic smart home still has many issues, indicating that a basic package that works out
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of the box is a myth and that almost every smart home has to be tailor made. The first

problem is the fact that no two houses are ever the same, thus making it hard to have a basic

package of sensors and services to implement. Programming everything is time-consuming

and makes a smart home very expensive. One of the biggest hassles is the adding of

sensors to the network and allowing them to communicate with all the others. Therefore,

this thesis will address this issue, making sure that a failsafe mechanism is implemented

in case communication would temporarily be impaired. Both classical sensors, such as

pressure, light, temperature, etc, will be supported, as well as sensors capable of sensing

multiple variables: cameras. These are the most advanced sensors known to date, since

they can sense motion, light intensity, colors and many more. When collecting data from

all these sensors, the next step is the reasoning on this data, automating this as much as

possible with a high degree of certainty in as many situations as possible. In order to do

so, this subject is divided in three pillars studied by different researchers.

� Sensor Communication

First of all Haerinck [4] focusses his research on the service oriented architecture.

His research includes the State of the Art of the different protocols for web service

communication (e.g. REST, REST-desc and SOAP) and the hardware needed to set

up a system like this. He configures the base of the architecture for the dynamic

discovery of new sensors in the house and the communication with the gateway.

� Reasoning

Reasoning is the second pillar and can be found in this thesis. This study explores

the possibilities of a reasoning module which is the artificial brain of the system. It

also focuses on the best ways to analyze data delivered by the different sensors in

the house. Based on the analysis, feedback is generated to tell the sensors if the data

was correct. This feedback can be used to reconfigure the sensors in case of failures

or corrupt data.

� Vision-based surveillance

This is the last pillar of the research, which can be found in the thesis by Houd-

mont [5]. It studies the possibilities of vision based surveillance in smart homes. The

module keeps an eye on the general movements of a person in the room and analyzes

specific situations. The analysis of images and thus surveillance as well in favorable

as in bad lighting conditions is important as the lighting conditions in a house aren’t

always as good. Person tracking gives the reasoning module information about the
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position of the person in the room, their pose (e.g. standing, sitting, lying down) and

the hotspots where the person often stops. Face and eye detection helps for detecting

the state of the person sitting in the couch.

Figure 1.1 provides an overview of the high level sensor architecture. The
”
Sensor in-

teraction module” is the gateway through which all communication between the different

modules is processed. The
”
Reasoning module” gets its sensor data for analysis through

this module and returns information through this module to the feedback block. The

feedback serves the sensors with data about the correctness of the information delivered

to the reasoning module. This can be used to reconfigure the sensors if necessary. The

service composition serves as an intelligent module combining different services with the

same semantic values to a bigger, more intelligent service. When a sensor transfers data

as described by the service and data description, The service composition will guide it

through the consecutive services for optimizing the usefulness of the data.

Figuur 1.1: High level architecture

The remainder of this master thesis is as follows:

� Chapter 2 describes what requirements this project will need to fulfill

� Chapter 3 contains the literairy analysis and research

� Chapter 4 shows how the application is designed

� Chapter 5 explains the build of this project in detail

� Chapter 6 summarizes the results of this project

� Chapter 7 contains some further thoughts about this project and a final conclusion
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Requirements

The basic smart home consists of many sensors, the challenge is to hide these from the

patient so that the system is not intrusive in his private environment. Due to the fact

that sensors need to be hidden, not all sensors can be used to their full potential or placed

where you would want to place them. The system also needs to be cost-efficient, so the

sensors should not be expensive at all. The downside to this is that sometimes a shortage

in data will occur. One of the challenges will be to build a reasoning module that can cope

with the lack of data, by filling in the gaps combining multiple sensors at once to still get

the result needed. The type of reasoning used must not be prone to errors, due to the

environment where the system will be used. Errors could have very big consequences for

the patient and he is always the number one concern.

Combining multiple values is an intensive task and requires rules and a reasoner to im-

plement this and get a fairly decent result. Due to the nature of the task, speed will be

one of the issues. The more time the system consumes in generating a conclusion, the less

responsive the system will be and that is never what you want. Another downside to a

longer execution time is the fact that it will consume more power, produce more heat and

be tougher on the batteries when power from the grid is not possible. So the system does

need to be fast but lightweight to run.

The system will need to be as flexible as possible, new sensors need to be added with

ease and rules need to be easy to write and maintain by someone without programming

knowledge.
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State of the art and related work

The biggest part of this thesis will be the implementation of a reasoning engine. The first

question is, what type to use. In the world of reasoning many types of techniques exist

who each have their advantages and in the end do roughly the same thing, but work in a

completely different way. This study will investigate the biggest differences, sum up the

advantages and disadvantages and form a conclusion based on the needs of the application.

One of the big differences that will be examined is the difference between predefined logic

and machine learning based reaoners. These are the two big classifications for reasoners.

3.1 Predefined Logic

Predefined logic is one classification of reasoners. A reasoner is called predefined if it follows

a set of hardcoded rules or a certain pattern to come to a conclusion about data. These

systems in their most basic form do not learn from the past.

3.1.1 Fuzzy logic

Making a decision, one of the easiest things in the world for any human. Humans do it every

day, mostly without even noticing it, humans have a sense for what is the right decision

without needing to think about most of them. This type of behavior does not translate to

machines very easily. When a human makes a decision, he evaluates the situation as good

as he possibly can by giving priorities to certain variables and mixing those with common

logic. Machines can’t do this very well, they do not intuitively give a weight to a variable,
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they simply compare it to a certain value they already know and take according action

at a certain outcome of the comparison. As Zadeh [10] [11] states, the variables used in

a machine can have the same meaning, but can be different in value. This means that a

certain label is placed over a collection of variables because they are all similar in type and

value, linking them to each other. This helps a machine tolerate imperfections in data,

making it possible to still use the data, even though it is not exactly what the system is

looking for. Dealing with imperfections is the first step to making a system think like a

human, because it can relate data to facts without setting a hard boundary, this improves

flexibility and robustness.

Figuur 3.1: Age represented by fuzzy logic.

Figure 3.1 illustrates this by describing a person’s age. A person can be young or old, the

words young and old give meaning to a variable, but the words themselves have no hard

boundaries. Humans interpret the words young and old and relate them to an age, which

is a number and therefore comparable to a different number. Nobody will deny the fact

that a twenty-five-year-old is still very young and that a seventy-five-year-old is getting

old, but what about a person is his mid-fifties? Some will find that this person is getting

older, while others will state that he still has many days ahead of him. The fact that it is

possible to find someone a little old but still very young is a problem for a machine. There

seems to be a cross-over zone, as shown in Figure 3.1. This way of thinking isn’t binary,

fuzzy logic can offer a solution to this problem.

Fuzzy logic is designed to utilize the space between 0 and 1, introducing a degree of truth
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that allows a system to make a decision based on a variable amount of certainty. A person

can now be 0.4 young and 0.6 old, making him relatively older than he is younger. That

allows the system to take according action, without being completely sure of the situation

at hand. In some cases this can be a big advantage since the system can now react in

situations where the system is not completely certain.

In the healthcare industry, using fuzzy logic is not common practice since the matter of

life or death is not something to judge based on an educated guess. Fuzzy logic is a great

technique allowing quick conclusions in a complicated environment, yet does not apply to

a real healthcare situation due to this downside. As a result, the technology is therefore

not applicable on its own to this project. It is however possible to build a reasoner that

is assisted by fuzzy logic as a check on the data it produces, giving a higher hit ratio in

correct solutions.

3.1.2 Forward chaining

The forward chaining technique is one of the most commonly used techniques in small

Artificial Intelligence (AI) projects. It combines logical rules programmed by a human or

extracted from a knowledge network [20] and a set of data, generated by one or multiple

machines. The forward chaining algorithm is a very powerful tool when used in smaller

subsets of related data. It allows the user to funnel its data through a system to get to,

in a best-case scenario, one solution with a high level of certainty. If the rules are chosen

wisely, it is possible to get the desired degree of certainty in a fast and cost effective way,

thus effecting battery life in a positive manner in mobile applications which is important

for this project. Forward chaining looks at the facts, to form a conclusion. This conclusion

can be considered as a fact as soon as the degree of certainty is high enough, making it

possible to generate new facts and make the general situation easier to comprehend by

providing a more complete answer.

To be able to use the chaining technique, data must have context to fill in the rules. This

seems like a huge overhead of network traffic, but in this day and age with high bandwidth

networks at an acceptable cost, this is not an issue anymore. The reasoner used in the

CARSA project [6] uses a form of chaining where it first filters out the unnecessary data

through reasoning, enabling the system to perform faster and generate more accurate

conclusions on the long run.

As Yung-Chien Sun and O. Grant clark [8] stated in their research, a rule based engine is
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a time consuming approach to reasoning. The design of a better system using super rules

was introduced. The system looked for frequently used rules, giving them a higher weight

than others, thus cutting back on processing time by predicting what rule would be correct

in case certain pieces of data where available. The combination of iterating through super

rules and base rules proved to be a big gain in performance and also aided in getting good

results from the reasoner.

A prime example of the forward chaining technique combined with OWL 2 data binding is

the DLEJena reasoner [9]. This technique runs on the Jena Framework, making it robust

and easy to setup. The DLEJena reasoner uses OWL 2 to its advantage by binding variables

to the rules it knows. It does this by matching data and rules based on previous usage.

After a few iterations the system will learn that certain variables are never used in certain

rules, thus ignoring them later on, cutting back on processing time and memory usage.

Jena uses RuleML as a syntax to interpret rules. RuleML has been around for a while and

is limited in use due to some design flaws. The developers however have been working to

fix these issues and all is looking good for the future. A W3C member submission called

SWRL syntax [13] partially fixes all the shortcomings of the original RuleML but is not

really usable yet, it does however look very promising.

3.1.3 Backward chaining

Backward chaining is similar to the forward chaining method as it is able to use the same

set of rules and data to come to a conclusion. However the conclusion using the backward

chaining algorithm is not one single answer to your question, the answer you get from the

machine is an entire subset of data extracted from the rules. In the backward chaining

algorithm you start from an activity, not the dataset itself. The activity is then related

to certain rules that prescribe that activity, making it possible to extract data about the

activity. For example when a person is watching the television from his sofa, the rules

state that the light sensor near the television should be fluctuating and the person should

be sitting down, thus activating the pressure sensor in his seat. If the system is certain the

person is watching the television but the light sensor is not fluctuating, this could mean

that the sensor is malfunctioning meaning that error detection has now become a lot easier.

When a sensor is told it should behave in a certain way, it knows that its values are off

compared to what the sensor is registering, triggering a diagnostics report on that sensor

and possibly notifying a technician to have a look at the problem. A system is also able

to learn, when it detects that a certain sensor has been outputting the same data over and
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over, but the rules state that the data is wrong, the system can learn from that data and

conclude that the rule could be faulty.

Besides using backward chaining for error detection, another way to use it is to check if all

the data derived from the given situation is compliant with the data from the sensors. If

the data is compliant, the degree of certainty rises once again to a level where it is safe to

say that the detection is working as it should and the individual is performing the earlier

detected activity. No contradictions in the data can also be a significant sign that the rules

are well thought out and working as they should.

3.1.4 Chaining in a real world example

In the example of Figure 3.2 the forward and backward chaining technique is used to

determine what the person is doing with an acceptable degree of certainty.

Figuur 3.2: Situation overview: Red - Hotspot A, Green - Hotspot C, Yellow - Camera, Orange

- Ambient light sensor, Blue - TV light sensor, Purple - Pressure sensor

Figure 3.2 is an example of a classic living room filled with a television, a sofa and some

windows. The behaviour of the person in this room can be tracked, as wel as the status of
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some of the appliances, due to the use of multiple simple sensors. In this particular room,

four sensors monitor each and every move. Assume that the system has been turned on

and that data collection is working as it should. To determine what a person is doing at

any given time, the system must first read the sensor data and then use that data to come

to a conclusion.

Sensor data

The sensor data is one of the most important parts of the project, gathering it without

a big delay and making sure it is as accurate as possible is key. In this situation, the

following data is collected:

� Ambient light sensor: high value, indicating that the room is well-lit

� Television light sensor: fluctuating value

� Seat pressure sensor: high value, indicating that an object is in the sofa

� Camera: X/Y position, in this case near hotspot A as last known position

Rules

The beating heart of the system is the rule engine. The rule engine itself is fed with the

sensor data, that data is funneled through the rules until a conclusion is formed. The rules

integrated for this example are:

1. Rules describing sensor values:

(a) The sofa is situated in hotspot A, set of X/Y coordinates

(b) The bed is situated in hotspot B, set of X/Y coordinates

(c) The television is situated in hotspot C, set of X/Y coordinates

(d) The camera’s motion detection is reliable when there is enough ambient light

(e) The camera can detect fluctuations in hotspot C when the ambient light is below

a certain level

2. Rules describing behavior of the individual or an appliance:

(a) A person is watching the television when he is seated and the television is on.
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(b) A person is sleeping when the lights in the room are off and he has not been

moving for a longer period of time near hotspot B

(c) A person is in need when he is laying down in a non-logical place.

(d) The television is turned on when the televisions lightsensor is fluctuating or

when the camera detects fluctuations in light intensity in hotspot C.

(e) The camera can detect fluctuations in hotspot C when the ambient light is below

a certain level.

(f) A person is sitting down when the seat is detecting a lot of pressure or if the

camera reliably detects that the person has stopped moving in hotspot A

Analysis

For the initial analysis, forward chaining will be used. Starting with the first sensor, the

ambient light sensor has been transmitting a high value, the first set of rules describes

what this sensor data means.

The system now knows that:

� The camera’s motion detection is reliable, as stated by rule 1d

� The camera cannot detect if there are fluctuations in hotspot C, as stated by rule 1e

The system now knows more about the capabilities of the camera. The camera has detected

the last known position of the individual near hotspot A, the system can now give a high

weight to this value because it knows the camera is reliable.

Given that the system now has information about the person’s last known position, it can

search in the behavior rules if it finds that position in a rule, indicating that it is relevant

to the information it has. Rule 2f states that the person is sitting down when he last moved

in hotspot A. The rule also states that the person is sitting down when the seat’s pressure

sensor detects a high load. The next logical step is to verify if it is, giving a higher degree

of certainty in case both conditions are met. The pressure sensor in this case is indicating

a high load, making it very likely that the person is in fact sitting down.

The system now knows that a person is sitting down with a high degree of certainty,

searching the rules for this behavior leads it to rule 2a and 2f. Since the systems knows it
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got this information from rule 2f, this rule is discarded from the list of possibilities. Rule

2a is now the one to investigate. Knowing that half of the rule is already filled in correctly,

the system will try to use other rules and data from the sensors to conclude if rule 2f can

be interpreted as true. If it is considered as true, the system knows that the individual is

watching the television, which in this case is the correct outcome of the data.

The system now knows that the individual is watching the television.

The fact that a rule has an
”
or” condition in it allows the system to detect an action with

a higher degree of certainty if both conditions are met, it can also correct information it

may or may not have received from a sensor, thus allowing the system to self-learn in some

cases. Self-learning can be achieved by relaying data back to a sensor and allowing it to set

the threshold in a different way or increasing sensitivity after detecting multiple
”
faults” in

the data. Rules with an
”
and” statement are very dangerous as they affect the reliability

in a bad way because contradictions in one rule can occur in case of sensor failure, making

the system unable to conclude anything. They are however very good to be able to achieve

a very high certainty, correct false information and avoid wrong conclusions. Rules with

an
”
and” condition should not be avoided, but used with utmost care and intelligence.

Fault correction using backward chaining

After the determination of the person’s activity, it is possible to check for faults in the

data and possibly correct them. A fault is not always a malfunctioning sensor, it could for

instance just be a miscalibration, a bad rule or a misjudged threshold. A contradiction in

a rule cannot be corrected through code, the rule in question can be avoided if detected it

is faulty, but generating a new one is a tricky and dangerous task, best left to the operator

of the system.

Starting from a given activity, such as watching television, certain conditions need to be

fulfilled.

The method to accomplish this is the exact opposite of the way the system detected the

activity. There are multiple ways to describe an action, therefore there are multiple ways a

system can come to the same conclusion. This gives the system the opportunity to examine

an action based on the rules it has. The aim of doing this is to take a different route to

the same solution in the reverse order, making it possible to get estimated values from the
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rules and to compare those to the actual values from the sensors, allowing it to self-learn

and evaluate its solutions and conclusions.

In this case, the person is watching the television. The system will search for the keyword

television and find all the rules that have a connection to it. Rules 1c, 2a and 2d apply:

� 1c: The television is located in hotspot C

� 2a: A person is watching the television when he is seated and the television is on

� 2d: The television is turned on when the televisions light sensor is fluctuating or

when the camera detects fluctuations in light intensity in hotspot C

From these rules it is possible to extract conditions that can be verified with the available

sensor data, if you consider that the facts are correct about the television being watched

(and is therefore turned on). These conditions are:

� Hotspot C has a fluctuating light intensity

� Television light sensor is fluctuating

� The person is seated

This extra knowledge can then be tested. The camera can try to detect fluctuating light

in hotspot C, if there is, this can be a sign that the television is indeed turned on, a first

acknowledgement of the fact that the person is watching TV. If there is no fluctuating

light, this can be a sign that the camera cannot detect the fluctuations. The system now

knows that the camera could be malfunctioning if it does not find anything in the rules

about detecting light in hotspot C. In this example the system will find the rule that states

that the camera cannot detect light in hotspot C if there is too much ambient light, thus

ignoring the warning about the malfunction. If all the extracted conditions are tested and

all of them pass, the level of certainty is very high, making the system robust and accurate

in most situations. Again, the main conclusion to remember is the fact that the system is

only as good as the rules it is given to work with. A chaining system’s setup is initially

very complex due to the rules, but once working properly it can become a very powerful

and reliable decision making tool.
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3.1.5 Decision tree

When visualized in a graphical way, the decision tree [12] and chaining algorithms resemble

each other in multiple aspects. They both use rules to some extent, work their way through

the data in a sequential way and correct branching is key for both of the systems. The

biggest difference between the two is that chaining uses hard facts as a rule, where the

decision tree is using data that is not always necessarily 100% correct.

Figuur 3.3: Simple example of a decision tree for evaluating if a game should be played [31]

The decision tree tries to give a weight to the outcome of a branch, making it possible to

factor in some sort of tolerance in the data. This tolerance is good in smaller applications,

but in more complex situations it will make the system unreliable, unpredictable or even

indecisive. The biggest issue is that multiple answers can be seen as true, due to the

tolerance that accumulates in every branch. This makes decision trees very valuable if

choices have to be made between options that can all be the right one, not in situations

where sorting between right and wrong is the question at hand.

In order to be able to determine an action, the decision tree will be very large and complex,
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especially in a smart home application, due to the already complex nature of human

behavior and the amount of actions any person can take part in. One solution to this

problem is the use of classification trees, thus sorting the data into classes by relevance to

one certain subject. Effectively programming a system like this is very labor intensive and

costs lots of system recourses at runtime. The biggest downside of this method is that the

work is not yet done when the classification is complete. Once classifications are made, a

regression tree is still needed to determine what action the subject is taking part in at that

moment. The system needs to make multiple iterations on the data and it will be hard to

be absolutely sure of the outcome. As a result, it is not a good method for smart home

applications where a high density of data needs to be examined and errors could be very

costly as described in the requirements.

3.2 Machine Learning

Although predefined logic is a very powerful tool, it does have its shortcomings. The logic

is predefined, this means that a system does not react very well to a new situation, one

that it is not programmed to handle. Another downside is the labor intensity for the

programmer because a person can do many things, so many things also need to be covered

by the code. Designing such a program could be very expensive when the application is

very complex. Machine learning is a partial solution to both these problems.

Humans tend to be influenced by previous events when making a decision. An accountant

wearing a silk suit for instance will experience that leaning against a freshly painted wall

is not the best idea he has ever had, because of the consequences. The accountant will

realize that a suit and wet paint do not mix very well, avoiding the same mistake later on.

This is called learning, something machines can also do by creating a profile for a certain

event and coupling variables to it or describing an event in characteristics. This can be

done in various ways, some more successful than others.

3.2.1 Support Vector Machine

The Support Vector Machine (SVM) is basically an algorithm that compares data to a

benchmark, looks for similarities and places that data under a certain classifier or label.

An SVM can be trained by sampling through sets of training data, this way forming a

profile of what defines an object or action. Every object can be identified based on basic
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data about it. For instance when an SVM is trained to sort blue and red blocks of Lego

(see figure 3.4), the training data could be a bunch of pictures of different blocks and their

matching color. The SVM will detect that there are two big differences in color, followed

by lots of different shades of each color due to lighting differences in each photograph. The

different shades will be mapped out based on their values as seen in figure 3.4.

Figuur 3.4: Mapping out red and blue, based on shades

Humans are very good at pattern recognition, even in the shortest amount of time a human

will recognize the fact that two clusters of data have been formed. These two clusters do

not seem to overlap, making it possible to separate these clusters by a single line. When a

new block needs to be color sorted, it can now be stated that if the color value falls above

the line, the block is blue or if it falls below, the block should be red. This technique

also works in a three dimensional environment. It is the first step in SVM reasoning and

is called separation via a hyperplane. The biggest problem in all this is choosing the

correct separation line, because multiple ones exist as shown by figure 3.5 (left). When

a separation line is not chosen correctly, the SVM could be prone to errors under certain

circumstances. A good solution to this problem is the maximum-margin hyperplane as

explained by Muller et al. [16] and further explained by Byun et al. [17].
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Figuur 3.5: Left: multiple hyperplanes can be found. Right: Maximum-margin hyperplane

The maximum-margin hyperplane is the hyperplane with the biggest possible distance

between the points of data and the plane itself. The distance is measured perpendicularly

from the data point or points closest to the possible hyperplane as seen in figure 3.5 (right),

this for both data clusters. Creating the biggest possible margin ensures the best accuracy

of the SVM when new data needs to be analyzed. The SVM is now ready to use in its most

basic form, yet could use some more optimization as explained in the next paragraph.

Figuur 3.6: Allowing errors via the soft margin

Suggesting that data sets can always be separated by one single straight hyperplane is a

bold claim and a limitation to the system. Most real world examples will feature datasets

that cannot be separated so easily, due to data pollution, incompleteness or just simply

very complex situations. If polluted data would be entered into the system it could cause

the hyperplane to shift position, corrupting the SVM for further use. Allowing a small
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amount of
”
errors” prevents this from happening. The soft margin lets a few data points

cross the hyperplane between the members of the opposite cluster as seen in figure 3.6.

Allowing certain
”
errors” is dangerous and could corrupt the data set, highlighting the

necessity of a control function that specifies how many points can get to the other side of

the plane and by how far they are allowed to go.

Figuur 3.7: Complex separation using a kernel function.

The fourth and final step in the SVM building process is designing a kernel function for data

that simply cannot be divided by a single line. A kernel function is a mathematical function

that adds additional dimensions to a set of data. If the kernel function is functioning as

it should, the data will be linearly separable in a higher dimension. Understanding kernel

functions is a very complex matter since we cannot always visualize an n-dimensional

space, but it is possible to project this line down to the original two-dimensional space.

This projected separation line will be curved, allowing for separation in a more complex

set of data as seen in figure 3.7.

The biggest downside to the basic SVM is its inability to cope with multiple classifiers at

once. As stated by Hsu et al. [19], building a multiclass SVM is still an ongoing research

topic. One could simply state that multiple SVMs can work together, which is true, yet

inefficient. In smaller projects, a good approach is to build a one versus all system. For

instance answering the question if a product is yellow, red or blue can be done by building

multiple small SVMs that answer the questions:
”
Is the product yellow?”,

”
Is the product

blue?” and
”
Is the product red?”. If trained correctly, one of the SVMs will be able to

classify the product thus solving the question. Usually doubling the amount of SVMs tends

to quadruple the amount of processing time needed due to the creation of overhead and
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extra data points needed to do the reasoning on. In smaller projects this is not an issue,

but it could become the main performance limiting factor in the more complex situations.

3.2.2 Case-based reasoning

Humans adapt to situations hundreds of times a day. They assess situations by recognizing

certain parameters that define a situation they have experienced before and then react to

the situation at hand based on previous knowledge. A system can learn to do this as

well, by breaking the situation into comprehendible and measurable parameters and thus

creating a profile for a certain situation. But what if not all parameters are met?

Case-based reasoning [14] is a variation on normal machine learning reasoning techniques.

Case-based reasoning is based on what the system has learned from previous events, but

now adapts to slight differences in situations where a non-flexible reasoner would just

become indecisive. The ability to relate situations to each other and act accordingly

depends on the experience the system has and is one of the biggest key success factors

to making case-based reasoning work. Experience however is very relative, a machine can

be very experienced when it comes to detecting if a television is turned on, but when it

suddenly needs to detect if there is a fire in the room, all of its information becomes useless.

If this type of reasoner is used for small projects it is one of the best [14], considering it will

be able to recognize situations and adapt to them very quickly if the data density in the

reasoners
”
brain” is sufficient for the problem at hand. The ability to separate actions from

one another and evaluate the changes between these situations is also of utmost importance

because the reasoner would otherwise spoil its data with false information. Getting the

facts straight is one of the key challenges in building a case-based reasoner, just like in any

other learning system.

The best way to explain case-based reasoning is through a real world example. If someone

spills a glass of Coca-Cola on the carpet, cleaning it up and treating the stains is the

action that needs to be performed. From previous events a person will know how to do

this, but what happens if someone spills some Sprite? The case remains the same, there is

some spillage on the carpet and it needs to be cleaned, this can be detected by a human

or machine due to pattern recognition. The variable in this case, is the soda itself, but

the action afterwards will remain the same. The person will know what to do in case of

Coca-Cola spillage, Sprite will fit this case because of its characteristics. The person will

then try to clean it in the same way, although the case is not 100% the same.
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The biggest challenge to implement Case-based reasoning into a smart home will be the

amount of situations a person can come across. The machine will need time to learn from

situations that occur, this could take a very long time. Due to the complex nature of some

tasks, the system will need various examples with the same characteristics before it will

be able to make a generalization of a task. No human works in a sequential way, so many

parameters will differ from time to time, making case-based reasoning hard to implement

in a smart home environment.

3.2.3 Neural network

The Von Neumann-based machines have been dominating the computer industry for years

and will continue to do so for many years to come. However they are not the most ideal

platform to run software that is capable of thinking for itself. They feature fast arithmetic’s,

work sequentially and follow the path that the programmer has embedded into the system,

but they are not good at adapting to situations, intelligent fault tolerance or parallelism

on a large scale. This limits the potential of some machines and places a bottleneck in the

innovation of computer systems as Hertz et al. [22] and Jain et al. [23] state. The best

solution to these problems up till now is the concept of neural networks. Neural networks

can help in situations where vast amounts of data need to be structured and processed,

where an algorithmic solution is not easy or possible and where lots of solutions to a

problem are possible. As can be seen on Figure 3.8, neural networks basically consist of

an input layer which contains input nodes, collecting the data that needs to be processed.

The second step in the process is the hidden layer, a layer that is never accessed by the

public and does all the processing. The hidden layer has many individual processing nodes,

connected to the input and output layer nodes. The hidden layer’s nodes work individually,

making the system faster by creating massive parallelism. After the processing is done,

the hidden layer outputs its solution to the according node on the output layer.
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Figuur 3.8: Representation of a neural network and its nodes [30]

Neural networks are based on the parallel architectures of animal brains, they use simple

processing elements with a high degree of interconnectivity between them. These elements

can adapt their interaction with each other in order to work more efficiently in known

situations, without creating high processing latencies for lesser known situations. This

means that you have a system that can alter its behavior in a reasonable amount of time,

without the trade-off of wasting processing power on the structural maintenance of the

network itself. Again this is an indication of massive parallelism possibilities, like in an

animal brain. One of the first examples of this architecture is the
”
Half a mouse brain”

project [29], an ambitious project mimicking half of a mouse’s brain which consisted of over

8000 neurons on IBM’s BlueGene super computer. The project got a respectable amount

of media attention and showed the world that sequential systems may be coming to an

end.

The project started its life as just a proof of concept, but as interest grew, some actual

tests where ran, some ending in success. The only real conclusion to this project was that

the world was not ready yet, because of the vast amount of resources needed to run neural

networks on such a large scale. A small scale project may seem very reasonable to run in

this day and age, but can still require more resources than expected due to the fact that

the network must be given the opportunity to learn in the beginning, adapt in real-time

and form conclusions all on the same machine. The network itself will never stop learning

and continues to evaluate and adapt at runtime, this creates overhead even for simple tasks
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where a normal sequential machine could be much faster.

Due to the complex nature of a neural network and the processing power that is needed in

these complex environments, it would be very expensive to use this technology in a smart

home. Every home would have to be equipped with a server room making this type of

system very power consuming and intrusive to people who are not familiar with technology.

The second issue with an application in a smart home is the amount of learning that is

needed to be done before the system is able to function. No two people are the same,

so their behavior will differ in most situations, making it hard to install a ready to use

system. Due to the amount of different actions a person is able to do, the system would

need to much time to learn. A solution to these problems could be to build a system that

only does basic things, making it less needy of processing power and learning time, but

then the advantages of a neural network would not be used at their full potential, making

the installation needlessly complex for the tasks it would be performing. Probabilistic

neural networks [15] can train easier and faster, but need more resources to make their

generalizations, so they do not apply to the smart home due to infrastructural problems.
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3.3 Conclusion

There is no reasoning method that will suit every situation, choosing the right one is a

complex task that depends on many factors of the project at hand. Hybrid systems that

combine multiple reasoning methods are a good compromise, but tend to use up a lot

of resources and are often very complex to set up. Table 3.1 gives an overview of the

strengths and weaknesses of the different techniques reviewed in this study. As stated in

the requirements, a reliable system is one of the most important features a system should

have. Therefore, a system must also be decisive at all times.

Setup Complexity Reliability Resource usage Decisive

Fuzzy logic Moderate Moderate Moderate Yes

Chaining Low High Moderate Yes

Decision tree Low Moderate Low No

SVM Moderate Moderate High Yes

Case-based Moderate Moderate Moderate Yes

Neural network High High High Yes

Tabel 3.1: Comparison between reasoning methods

Human behavior differs from person to person, making it hard to implement a pre-learnt

system into a smart home. Training a machine like the case-based system or neural network,

would take too long and could cause an inconvenience to the user. A pure machine learning

based system is not ideal for this application, because the application itself is too complex

for each of the systems to adapt effectively over a short period of time.

Another issue with smart homes is the fact that they are a medical application. In medical

applications, mistakes can be very costly with the highest price being the life of a human

itself. Making sure the reasoner makes the right conclusions as much as possible is the

biggest hurdle in the development of a smart home, adding sensor or network failure to

the equation makes it virtually impossible to build a system that is right all the time.

This illustrates the importance of building a reasoner with built in mechanisms to make it

fail-safe, even under the toughest of conditions. At the time of writing, the system with the

highest degree of certainty is a rule engine that combines both chaining methods to come

to a conclusion and then check that conclusion with values it has as a benchmark. This

makes it possible to detect a failing sensor, thus aiding the user to get a better experience
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in the end. The chaining method could however benefit from a joint-venture with a fuzzy

logic machine and a neural network to extract rules [20] from the data it has processed,

but this would cause very high resource usage, without a big increase in reliability.
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Application design and further

research

As noted in Chapter 3, choosing the correct type of reasoner is essential. Research has

shown that the chaining-based reasoners suit the smart home application best for various

reasons, yet not every reasoner of the chaining type is the same. During the first phase of

research, two chaining-based reasoners did attract some attention to themselves, these will

be looked at further in section 4.1. Next, based on the research results, the main structure

of the application is presented in section 4.2.

4.1 Types of reasoners

During research, Jena and Euler where named frequently. A comparison between these

two is made in order to determine which of these suits the project best.

4.1.1 Jena

Jena [25] is, at the time of writing, almost twelve years old. Development began in the

early part of the year 2000, under the wings of Hewlett-Packard’s development lab. It soon

gained a lot of interest among technical experts and leisure programmers. Due to Jena

being an open source initiative, many developers were given an opportunity to experiment

with semantic content and reasoning. This caused a boost in growth for the project as its

user base became larger every day. In late 2010, HP’s team decided to try and get Jena to
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be adopted by the Apache Software Foundation. Due to the fact that over the course of

ten years Jena had become increasingly popular, they succeeded.

Jena has now grown to become a powerful Java framework for building semantic web

applications. The Jena API supports:

� An API for reading, processing and writing RDF data in XML, N-triples and Turtle

formats

� An ontology API for handling OWL and RDFS ontologies

� A rule-based inference engine for reasoning with RDF and OWL data sources

� Stores to allow large numbers of RDF triples to be efficiently stored on disk

� A query engine compliant with the latest SPARQL specification

� Servers to allow RDF data to be published to other applications using a variety of

protocols, including SPARQL

Jena has been under development for quite some time, and the result is an extensive

API with a lot of built in functionality as listed above. The Jena framework consists of a

number of smaller pieces that together form a large and usable tool. As shown in figure 4.1,

Jena consists of three big sections: an RDF API, the inference API boasting the internal

rule-based reasoner and the store API which makes it possible to store the outcome of the

reasoner in a number of ways. In this project, the inference API will be the most important

one.



4.1 Types of reasoners 28

Figuur 4.1: Graphical representation of the Jena framework [25]

The RDF API is where it all begins. This piece of the code parses your data and rule files

into a usable format. The RDF API allows you to add data in a variety of formats and

supports the adding or removing of data in the collection. Data can be imported from files

or URL’s, thus creating a really usable machine that can easily gather data from across

the globe if it has to. This makes Jena a flexible cloud application when it needs to be.

Jena also supports RDFS and OWL, these are ontology languages that further implement

data in a correct way and add support for linked-data applications, which are a necessity

for every serious semantic web application.

Once the RDF API is done loading and parsing the available data, it passes the data on to

the next step, the inference engine. The inference engine’s goal is to deduce new data using
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the data from the previous step. It does this by applying rules to the initial data sets in

order to form new conclusions that can then again be used as data. The machine outputs

these fragments of new data into the old data as if it was always there, in the same format.

Jena has two built-in reasoners, but does offer support for external options to reason in a

more specific way if necessary. Jena supports forward, backward and hybrid rules to form

conclusions based on data. The forward chaining reasoner that is part of Jena’s framework

is based on the RETE algorithm [7], while the backward chaining reasoner utilises the

logic programming (LP) method which has a smilar way of working as a full Prolog based

engine.

If no parameters are given, the framework does its best to gather as much new data as

possible by combining all available techniques and both reasoners as shown in figure 4.2.

This is the hybrid and most powerful mode. It infers as much data as possible, yet is very

intensive to run. To cut back on execution time, the framework can be configured to only

use the forward or backward chaining reasoner.

Figuur 4.2: Hybrid mode using both reasoners [25]

Jena’s built-in reasoners seem very complicated at first, but using them is not so hard. The

hardest part of using Jena is knowing what every component is for and how to use them.

The documentation on Jena’s website is a good guideline featuring many tutorials and

examples and can be a guideline to create an application in a short amount of time. Using

the reasoner in its most basic form, without any configuration or parameters, is possible

and not very hard as can be seen in figure 4.3. This example shows the code needed to

execute a simple command, imported from a file on the hard drive.
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Figuur 4.3: Executing a simple command using Jena.

The result of the inference engine is then passed on to the output module, or store API. The

Store API supports the storing of data in SQL databases, the machine’s internal memory

and on the machine’s discs by default but can be expanded to support custom storage

solutions if one would need it to. Storing triples in an efficient way is a much overlooked

fact, but handled by Jena very well.

4.1.2 Euler

Euler is a backward-chaining reasoner with Euler path detection [28]. The project was

started in 2002 and the first stable version of Euler saw the light of day in early 2004.

Euler is still under heavy development and is updated on a monthly basis. Euler features

Euler path detection, a feature not found in other reasoners. The Euler path detection

makes sure that the reasoner can not get into a trivial loop, meaning that the reasoner

does not have the issue of stepping in its own tracks. In execution time, this is a huge

advantage when things go wrong. Backward chaining reasoners do tend to loop more often

than forward chaining reasoners, so path detection was a welcome addition to the system.

Euler achieves this by chaining through the data and saving a list of what rules it has gone

through, if a rule is called upon twice in succession, the rule is ignored and the chain is

backtracked to where it was before the looping occurred as shown in figure 4.4.
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Figuur 4.4: Euler path detection at work

Euler is capable of generating proofs for any question you ask it, if supplied with the correct

data and rules, another feature not often seen. Analyzing proof can aid in understanding

data and the way it was formed. Proof generation shows the steps taken to come to a

certain conclusion, sometimes it is more important to look at how a solution was found

than the solution itself. Proper proof analysis can aid in writing better and faster rules,

Euler can give you just the right output to do this. Euler offers implementations in C#,

Java, Python and JavaScript. This makes the reasoner very versatile as it can even be

deployed as a web application as seen in Ruben Verborgh’s N3 tutorial [27].

EYE is a backward-forward-backward chaining reasoner and implements Euler fully. EYE

is the reasoner that is used for this comparison, not Euler in its basic form. The backward

chaining reasoning engine makes good use of YAP [26][21], a Prolog interpreter that is

considered to be one of the fastest out there. Prolog is a logical programming language

widely used in reasoning systems. Using YAP, EYE can achieve very high reasoning speeds

and this shows in further testing.

EYE is a fairly easy to use reasoner, with no extensive configuration required. After

downloading and correctly installing EYE, it can be run from the command line using

basic commands. Already after doing this first test, the speed of the EYE reasoner will

not go unnoticed. Implementing EYE into your own program will be just as easy, all you

need to do is instantiate it, call it and show it where the rules are. Figure 4.5 shows how

to execute a query using EYE in four simple steps.
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Figuur 4.5: Using EYE in Java

After query execution is complete, EYE outputs a string containing old and new data in

combination with the necessary identifiers. This output is ready to be saved or processed

in any way you want.

4.1.3 Testing

Choosing the correct reasoner for the job based on features alone is not accurate nor

possible. To really get a good eye for what can or can not be done by both reasoners,

objective testing is the only way to go.

In this use case, the application will be used to monitor humans. Humans are very slow

compared to computers, they do not tend to change their status very quickly, as they

perform tasks like watching TV which can go on for hours. This means that the reasoner

does not have to be very fast to keep up with what the human in doing, but does this

mean speed is not important?

In the world of computing, speed is everything. Raw speed might not really be necessary to

reason with great accuracy, as explained before, but can still make a difference where one

would normally not expect it to. Reasoning is a very intensive task when used to perform

jobs that require a lot of inputs and have many possible solutions, thus can take up a lot

of time and system resources. Each millisecond a system is under load, it consumes a big

amount of electricity. This affects battery life in a negative way which can be an issue if

power from the grid is not available. Another side effect of being under load is that each

and every clock cycle, more heat is produced, heat that needs to be taken away by electric

fans and thus again affects battery life in a negative way. So it is safe to say that speed is

important, but just not for the obvious reason.
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To perform the speed test, each rule engine is given the same rule set and performs an equal

amount of iterations. The rule sets are designed to test certain features of the reasoner.

Both rule sets are basically the same, yet have their syntax differences as Jena uses an

RDF/XML syntax and EYE uses the much easier to read N3 format.

Figuur 4.6: Difference in data formatting. Left: N3 data representation, Right: RDF/XML

data representation

The first test is the easiest and most basic of all available operations, just a plain and

simple match-and-output of data operation based on a simple rule without variables or

inference. Figure 4.6 represents the first set of data, also clearly showing the difference

between RDF/XML and N3. The reasoner was then asked to get Cindy’s last name. No

variables, aliases or other operations where used to keep load to the bare minimum. As

Figure 4.7 shows, the EYE reasoner was by far the fastest in this early stage of testing.
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Figuur 4.7: Test 1: execution time in milliseconds, Blue: Jena, Red: EYE

In this first test, Jena clocks an average execution time of 394ms. Although this is fast

enough to cover most of a human’s moves, EYE certainly impresses with a very fast 6ms

of reasoning time. If startup time of the respective reasoners is included in the test, EYE

once again emerges victorious with an average startup time of 143ms against 221ms for

Jena. The total average time of one complete reasoning session would then be 149ms for

EYE and 615ms for Jena, thus meaning that EYE is roughly four times faster in a basic

operation.

The basic operation is a good indication of startup and minor execution time, yet things

get interesting when a more intensive task is demanded from the reasoner. Both reasoners

have the ability to work with variables, link those to existing data and then inference on

that data to form new fragments of data. The reasoner in this project will mainly be

used to inference new data, based on what it knows about a situation so testing how both

perform is a logical next step. In the next test, the reasoner is given a set of data with a

matching set of rules based on the examples found at JenaRules [24]. These where modified

to fit the EYE reasoner and ran 1000 times as a test on both systems.
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As figure 4.8 shows, EYE emerges fastest once again. EYE seems fairly unaffected by the

increased complication of rules and data and remains very stable as load increases. During

testing no memory usage issues were recorded, both reasoners remained within acceptable

limits. Jena did seem to increase memory usage slightly in the second test, while EYE

remained roughly at the same level. Average processing time for Jena was 499ms, while

EYE checked out at an impressive 8ms, or 63 times faster in pure reasoning if startup

time of the reasoners is ignored. It is to be noted that both reasoners performed very well

during both tests with no errors, crashes or incomplete inferences.

Figuur 4.8: Test 2: Execution time in milliseconds, Blue: Jena, Red: EYE

Although the result of both reasoners was predictable, the real difference was to be found

when both data sets are compared to one another as seen on figure 4.9. Immediately

noticeable is the fact that the increase in difficulty makes the processing time of the Jena

reasoner increase significantly. On a single run, this does not form a problem, but when

more rules are added and the application expands further than the reach of this use case,

this could become a problem to guarantee a responsive system at all times.
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Figuur 4.9: Test 1 and 2 compared: Blue: Jena 1, Red: EYE 1, Green: Jena 2, Purple: EYE 2

4.1.4 Conclusion

Two reasoners, both very similar, yet very different. Table 4.1 shows an overview of the

most important features of both tested reasoning engines.

Jena EYE

User License Open Source Open Source

Version 2.6.4 2012-05

Last updated 2010-12 2012-05

Install Size 23.3 Mb 13.9 Mb

Type of reasoning Forward, Backward or Hybrid Backward-Forward-Backward

Ease of use Complex Easy

Execution Speed Moderate Fast

Accuracy High High

Tabel 4.1: Comparison between Jena and EYE
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As stated in the requirements, a fast and reliable reasoner is needed to maintain a responsive

system and keep energy costs to a minimum. EYE is by far the favorite based on execution

time alone. Jena does have the advantage of offering a more complete API, but is harder

to use and most of the features it offers will not be used anyway. The clear winner in this

test is the EYE reasoner and will be implemented in this project.

4.2 Structure of the application

After all research is done, a good idea is formed of how the application should work and

how it has to react to changing data. The main structure of the application will feature

four main ingredients:

� A data acquisition module

� A set of rules

� EYE: reasoning engine

� An output module

These four blocks will be structured as seen in figure 4.10. They will interact with each

other when needed, adding to the flexibility of the system itself.

Figuur 4.10: Structure of the smart home reasoning application

4.2.1 Data acquisition

The data acquisition module will be in charge of gathering the data from the sensors

through the network that was designed by Vincent Haerinck [4]. Once the rough data has

been gathered, it will be formatted into a usable N3 format and saved to the hard drive

for further use.
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4.2.2 Rules

The rules will determine how the application uses the sensor data and try to deduce new

data from the already existing data. The rules will be loaded from a rule file from the

hard drive of the machine, and then used by the reasoning module in combination with

the data that was gathered earlier. The rules will specify what actions can be detected

and what sensors to use to detect a certain activity. The rules will also be used to check

the data provided by the sensor, with the intention of finding malicious data and thus

malfunctioning sensors.

4.2.3 Reasoning

The reasoning module will be the heart of the application. It will combine the rules and

the data while providing conclusions based on its inputs. EYE will be the reasoner of

choice after testing. The reasoner will output the conclusions to the output module, but

will also get input from the output module when it will be asked to verify sensor data.

4.2.4 Output

The smallest of the four main pieces of the application will be the output module. The

output of the reasoner module, as discussed in the previous section, will be in the N3

format. This set of N3-triples needs to be examined for new data and processed into a

clean set of variables, with the most important one being the activity of the person in the

end. This activity will then be relayed back to the reasoner to check the values as a built-in

fail-safe mechanism.
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Implementation

5.1 Data acquisition

The first step in reasoning, is gathering the data to reason on. If data is not delivered

correctly, the system would be flawed and not work at all so this is the first important step

in the whole process.

At initial startup, or after a certain period of time, all sensors are queried and deliver their

data. This is the first stage in the data acquisition process.

Figuur 5.1: Rough sensor data as received from the web services

A typical example of received sensor data can be seen in figure 5.1. The collected sensor

data is still in a rough format and is not yet ready for use, it still needs prefixes and URI’s

to work properly. The data that needs to be added to the received sensor data is read
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from a file on the hard drive and added to the sensor data. A correctly formatted data file

consists of three parts:

� A set of URI’s

� A set of prefixes

� The actual data in N3 format

A URI is the definition of the data that is being used, usually in the form of a URL. The

goal of a URI is to define data in a semantic model, allowing the data to have a meaning

on the web. Adding this property to data makes it linkable to a subject or usable in a rule.

The advantage of doing this is the fact that data can be reused in other applications and

universally identified on the web.

The prefixes are abbreviations of the URI used in the data model. These are used to make

the data and rules easier to read and write. If prefixes would not be used, the data would

look like the top two lines in figure 5.2. For each and every value, a semantic definition is

needed. If no prefixes would be used, the value could still be described by using the URL

every time. In a complex application, this would make it harder to work with the data

manually and also increase the file size and thus adding load on the network that should

not be there.

Figuur 5.2: URI notation (top two lines) vs. prefix representation of data (bottom three lines)

Prefixes are not a complicated thing, nor are they very large, so they should be able to

be stored in the source code and ready for use. If these prefixes would be stored in code,

two less file I/O operations would have to take place making the application just a bit

faster. The reason why the prefixes are not stored in the source is because a technician

would need the source code to be able to make an adjustment to the system. The system is

designed to accept new sensors without any complex configuration, so it would be counter-

productive to need a programmer every time a small adjustment or new sensor needs to be
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added. With the prefixes read from just a single text file, it should be easy to add or adjust

parameters even if the person doing the adjustments does not have any programming skills.

The data itself consists of an N3-formatted string, containing a subject, predicate and an

object. In this use case, the subject can only be a sensor, a person or a warning. The

predicate states what will be said about the subject, this can be almost anything. A good

example of a much used predicate is
”
position”, meaning that the value will be the position

of the subject, in most cases the patient.

Once the data has been formatted and enriched with prefixes and URI’s, it can be seen as

a complete and ready to use collection of N3 Data. Before this collection is passed on to

the reasoner, is it written away to a file for future use. These files can be used later on as

a source of data for machine learning, or simply as a backup or log entry to map activities

and warnings.

In a later stage of the reasoning process, it may occur that there is some doubt about some

of the delivered values. It is of course possible to query specific sensors, although this will

be used less frequently than a normal query to all sensors at once.

5.2 Rules and reasoning

In the smart home project, two types of rules are used. One set focuses on determining

every aspect of the situation in the home, while the other checks if the deduced data is

correct. Both of these actions require the usage of the reasoner.

5.2.1 Reasoning with EYE

Deducing new facts from already existing data is what a reasoner is designed for, it can

have multiple ways of doing this. The EYE Reasoner has support for variables, implements

semantic linking of data and some built-in easy to use functions. These features combined

give the user the power to deduce facts with great precision in a fast and effective way. EYE

does more than only reasoning, it can do basic functions such as adding and multiplying

but also string or time based operations, making the reasoner a tool that also works with

the data and not just processes it. This functionality comes in handy in certain aspects of

the project, such as person detection based on coordinates provided by multiple sensors.
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The built-in functions used in this project are primarily math related and used to compare

values or perform basic mathematical operations with the data.

The reasoning itself happens in multiple stages. The first stage of the process is the

importing of data that was saved on the hard drive earlier. File import and export is

supported by the EYE Reasoner out of the box, getting the data into the reasoner is

merely a matter of calling the correct methods and supplying the correct filename and

location. The reasoner itself needs three things to work properly:

� A correctly formatted set of data

� A set of matching rules

� A goal to reach

Once the reasoner is asked to query the data and rules, it automatically fetches the data

from the hard drive. This makes the reasoner easy to use and keeps the code easy to

maintain. File I/O does cost some time, so the reasoner also supports direct import from

data stored in memory, as long as the data is in the correct N3 format.

The rules combined with the sensor data define what the output of the reasoner will be.

The rules use the data to deduce new facts in an easy to adjust and very flexible way. The

rules are basically a definition of what type of data can be used to deduce new facts, they

are filled in by the data and generate an output in the form of an activity or warning.

5.2.2 Basic rule design

The sensor data from the previous section, means nothing without a benchmark to compare

them to. Sensor data needs to be combined and analyzed to be able to form a correct

conclusion, the best way to do this, is by filling in a set of predefined rules. The rules

specify where a sensor value is used, what it can be compared to and what the outcome of

a combination of values could be.

At first, working with rules may seem complex and not worth the effort. As soon as an

application grows however, the true advantages of using rules soon come to the surface.

Using rules is a great way to maintain different inputs in an orderly fashion, without the

clutter of writing hundreds of different if/else constructions or switch/case code blocks. A

good tutorial on writing your first rules using N3, can be found at http://n3.restdesc.org
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[27], the website offers a clear look at what basic rules are and why one would want to

implement them. Rules can also be tested in real time on that website which makes it a

valuable resource to those making their first steps in rule-based reasoning.

There is no real golden approach to rule design, but a good way to start is by defining

what your ultimate goal will be. The next step is to define what data is needed to reach

that goal and to work with that as a starting point. Most of the time a combination of

inputs will be enough to reach the end goal, but hard coding of every goal including its

steps to reach it is not good design practice.

A better way to implement the data received from the sensors, is to design the rules based

on a cascading effect. The reuse of sensor data directly can cause a rule file to become hard

to maintain and read, causing anomalies in the reasoning process later on. Good practice

is to have some steps in between start and ending of the reasoning. After every step, a

new fact is deduced if all is according to plan, this new fact can be used as an input in

multiple other rules. As will be illustrated below, this design is a lot less prone to errors

and will shorten the rule file itself.

To illustrate the usefulness of this design principle, a comparison between figures 5.3 and

5.4 is made.

Figuur 5.3: Rule using all data at once

At first glance, figure 5.3 seems to be the best option as there is only one rule needed to

determine the end result. The amount of code is also shorter and easier to read since no
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references are made to data from other rules. The downside to this approach, is that only

one value is deduced from a large amount of input variables. In this example, the outcome

of the reasoning process is that the patient is watching the television. Although this is

correct, if the input data is examined, it soon becomes clear that more than one fact can

be deduced from that data set.

To be able to deduce more facts that the reasoner can use later on, the cascading style of

rule building is a good option. The reasoning now happens in multiple steps on smaller

fragments of input data. Each time a rule passes its preconditions, a new conclusion is

formed. The more conclusions are formed, the more accurate the end result can be deter-

mined. This type of reasoning is illustrated in figure 5.4. The output of that combination

of rules is still that the patient is watching the television, but that conclusion will be ac-

companied by the new fact that the person is also sitting down. So more data has now

been deduced, without adding new inputs.

Figuur 5.4: Rule using cascading

This extra data can from now on be used in other rules, the main advantage of this

technique is that sensor data only needs to be processed once and is from then on carried
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through the rules as a new fragment of data. Combining data into new shorter fragments

makes it reusable in other rules, this way data does not have to be repeated in the same

file keeping everything easy to adjust and maintain. For instance, if a system supports six

different ways of determining where a patient is in the room, the system can combine all

six ways into one fragment of new data. This new fragment can later be used if a position

is required, instead of using all six once again in a different rule.

After all input data has been used and all possible connections have been made, the

ultimate end result is one activity and a set of possible warnings or extra data that has

been generated. Once the main activity of the patient has been determined, the first round

of reasoning is done.

5.2.3 Profiling the current state of the room

A room is, just as its inhabitant, a living thing. Appliances can be turned on or off,

the lights can be dimmed and the ambient light coming from the windows changes over

time. Being able to correctly judge the state of the room and the objects in it aids in

the reasoning process. Sensors are deployed everywhere around the house to detect these

changes, the most useful ones have been implemented into the rules used in this thesis:

� Light sensor: monitors the TV

� Light sensor: measures ambient light in the room

� Pressure sensor: measures the amount of pressure in the TV-seat

� Pressure sensor: measures the location and the amount of pressure on parts of the

floor

� Pressure sensor: measures the amount of pressure in bed

� Temperature sensor: measures the room temperature

� Power consumption sensor: measures the power consumption of the stove in the

kitchen

� Kinect Camera: monitors the room
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The way these sensors are used in the application varies greatly. The application is a

multi-sensor application, meaning that multiple sensors will combine forces to detect one

situation, but there is also a possibility that multiple situations can benefit from the input

data of a single sensor. The camera for instance will be a motion sensor, position sensor

and a light sensor all in one. Although this seems like a good thing, it does take up a

lot more processing power, is far more complex to configure and maintain and can be less

reliable than for instance a simple pressure sensor. A wide range of sensors is available

these days, but not every situation can easily be checked using multiple sensors. A good

example of this is the room temperature, the only cost-efficient sensor that can be used is

a resistive temperature sensor.

In a room, multiple situations can occur and not all of them are equally important or hard

to detect. The easy situations that use simple sensors will be configured as single sensor,

single purpose situations. Room temperature is one of these situations. Because of the

reliability of the sensor and the fact that room temperature is not often needed in the

reasoning process, only one input will be used as seen in figure 5.5.

Figuur 5.5: Processing basic single-sensor data

It is true that using only one sensor as an input is a risk, but not every situation would be

worth the effort and cost to implement multiple sensors. The room temperature is used

in only one place so if this sensor was to fail, a technician would notice it and the rest

of the reasoning capabilities would not be impaired because of the malfunction. Another

example of this would be to detect if the stove was on or not. This is done using a power

consumption sensor, one could choose to implement a temperature sensor as well, but that

would require physically altering the stove itself.

Some of the more advanced aspects of a room, such as appliances in use or the overall

condition of a room, will be used in multiple other rules. Because these fragments of data

are used in multiple places, it can be necessary to detect these with greater precision. This
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form of detection is the first usage of the multi-sensor aspect of this thesis, as seen in figures

5.6 and 5.7.

Figuur 5.6: Basic multi-sensor data processing: detect the state of the room

Although the fact that a room is lit or not does not seem to have a direct impact on a

person’s situation, this data can be valuable throughout the rest of the reasoning process,

so it is important to detect this in a reliable way. The Kinect camera can output RGB and

IR images, if the camera is used as a motion detector it has to know whether to use RGB

or IR. This is where the first linking of data will occur. If the room is dark, the camera

will not be reliable enough in the RGB mode. To signal this, the ambient light sensor can

tell the system not to use RGB mode and to switch to IR mode instead. In the event of

too much direct sunlight, IR mode would fail and RGB mode will be activated. In an ideal

lighting situation, the camera will be able to use both modes to compare data.

Another seemingly useless thing to know, is if the TV is switched on or not since it has

nothing to do with a person’s health state. When a person has not been moving for quite

some time, this could be considered as an alarming state. The reason why one would want

to detect if the TV is on or not, could be to check why a patient is not moving. If a person

is watching the TV from his seat, it is normal that he moves less. So knowing if the TV is
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turned on or off (Figure 5.7) can once again aid in improving reasoning results.

Figuur 5.7: Basic multi-sensor data processing: detect the state of an appliance

Other appliances that can be checked on their status by the reasoner include lights, the

cooking stove and certain types of furniture.

5.2.4 Detecting the person’s position in the room

Successfully and reliably detecting a person’s position is one of the big challenges in the

design of a smart home. In this use case, the detection of a patient’s position is done using

pressure sensors in the floor and furniture and based on the images from the Kinect camera.

All of these values represent an X/Y coordinate system or a simple pressure reading, these

can be used in calculations, compared to each other or used individually. Because not all

sensors are of equal accuracy, the introduction of zones or hotspots as seen in figure 5.8

can aid in a better detection of a person’s position. The usage of zones adds in a little

tolerance to the detected position, which can be tweaked for better performance once the

system is deployed.
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Figuur 5.8: Zones in a smart home (size of zones exaggerated for educational purposes)

The first step of the reasoning process is to try and determine in which zone the person

is at this time, using all available data. The sensor data that has a relation to a person’s

position will be represented in an X/Y format, making it easy to work with. These values

will represent the position of the person, but a sensor can be faulty, so they need to be

compared to each other to find if one of the sensors would deviate too much from the

others as seen in figure 5.9. To achieve this, the average value of the measured X and Y

positions is calculated, the difference between each value and the average is then calculated

and evaluated as seen in figure B.1.
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Figuur 5.9: Sensor data and their average value in the room

Once the person’s average position has been calculated and the deviation of each sensor

from it has been found, the deviation can be checked against a threshold. This doe for

each set of coordinates separately. In case of the camera, one could state that the camera

is reliable because the room is lit and detection is optimal in those conditions as checked in

figure ??. This is however not a safe way of working because the camera could malfunction,

even if conditions are ideal. The camera is also checked on deviation from the average, as

seen in figure 5.10.

Figuur 5.10: Compare the deviation to the threshold
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As soon as every sensor has been deemed reliable or not, the calculation of the average

location value is done again, this time without the failing sensors should they exist. The

output of this calculation is the estimated X/Y coordinate pair that represents the location

of the person in the room. If a sensor was failing, the system can now warn which sensor

has been malfunctioning as done so in figure 5.11. Of course this type of detection is very

dependent on the amount of data it gets from the sensors. If only two X/Y coordinate

systems can be obtained, the system will not work correctly. The more coordinate systems

the reasoner gets, the better the overall result will be, another indication that a multi-sensor

environment is very useful.

Figuur 5.11: Recalculation of the position without a failing sensor

The last step in this process is just a small one, it’s the addition of zones into the system

to be able to have some tolerance since multiple values will always differ a little bit. A

nice plus side to this zone system is that it is now possible to label the person’s position

as can be seen in figure 5.12. This label adds to the readability of the rules and makes it

a lot easier to use the person’s position in other rules.
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Figuur 5.12: Addition of zone labels to a location

5.2.5 Detecting a person’s activity

In detecting what a patient is doing, the most important variables are usually the person’s

position and what objects are used in the process of the activity. These two variables have

a relation to most of the data detected by the sensors and most of these inputs can be

detected in multiple ways. This was done in the previous sections. This deduced data can

be combined into activities in an easy flexible way.

At this stage of the reasoning process, a lot is already known about the person and his

environment, but not yet about what he is actually doing. The combination of deduced

data makes activity detection very easy. In Figure 5.13 the person’s location is combined

with new information to come to the conclusion if he is sitting down or not.
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Figuur 5.13: Detecting a person’s activity

The system is able to detect if a person is sleeping, cooking and other basic activities based

on his location, the appliances in use and the room state. Combining these variables proves

to be an easy to use and understand way of working. It is very flexible and allows the user

to write and maintain rules very quickly.

Activities can sometimes be combined as well. For instance when a person is watching TV,

he will be sitting down in his TV-chair. Detecting that a person is sitting down proved to

be easy using the data the system already has. Of course more than one combination of

data can be made. Once the person is detected to be sitting down, this can be combined

with other data as seen in figure 5.14. So now the person is doing multiple activities at

the same time, which is perfectly normal in everyday life. The combination of multiple

activities can be a better representation of what the person is doing, so the formed end

conclusion has once again gained in overall accuracy.

Figuur 5.14: Combining conclusions to come to a more accurate conclusion

One more advantage of combining a detected activity with earlier deduced data, is to try
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and detect bad situations early or even before they happen. Some situations can not be

combined in a safe way, it is important to signal this to either the caretaker (preferably)

or to let the system intervene to prevent accidents from happening. One of the big health

and safety risks is a fire in the room of the person. Detecting a fire could be done using

the Kinect camera [18], but it would be better to prevent the fire from happening in the

first place.

If the system detects the person is standing near the stove and the stove is on, it is safe to

say that the person is cooking. As the stove emits heat and the person is there to check

on it, the situation can be classified as non hazardous. This soon changes when the person

starts to watch the TV while he is cooking. If the system detects that the person has left

the stove unsupervised, it could be useful to signal this as shown in figure 5.15. As the

person is still around, the situation does not require an immediate alarm.

Figuur 5.15: Possible fire hazard detection

A more serious situation could occur when the person has gone to sleep and has forgotten

to turn the stove off. If the stove could be on for hours with no one to keep an eye on it, a

fire could be imminent. If the system detects a situation where the danger is really great,

it could be useful to let the system intervene as shown in figure 5.16.

Figuur 5.16: Imminent fire hazard with a request for intervention
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Letting the system intervene automatically could be considered as a breach in the person’s

private atmosphere, but it certainly is a subject worth discussing with the person during

deployment of the system.

5.2.6 Double-checking deduced data

Although the first round of reasoning is enough to get an accurate result in most cases,

double checking allows to detect that some actions or parts of actions can be influenced

by a single sensor and that one sensor can be faulty. Now that the activity of the patient

has been detected, it is possible to work the other way around through the data. It is

always true that one activity can be linked to multiple segments of data, so there has to

be a value that is expected to match the activity at all times, else the activity can not

exist. This theory can be proven by the fact that EYE is capable of generating proof of

the conclusion it forms. It illustrates the path towards the solution, so going backwards

should be possible at any given moment.

The idea behind all this, is that the real time sensor data can be checked against the data

one would expect if a patient is doing a certain activity. Comparing these two sets of data

can highlight misconfiguration issues or malfunctioning sensors. This form of error control

is a nice extra that can be achieved without much effort since the data and reasoning

engine is already there.

Figuur 5.17: Conclusions can be formed through multiple paths

During the reasoning process the reasoner will fill in all the rules with the data from the

sensors as usual. Figure 5.17 shows the path a reasoner uses to form a conclusion (green).

Once a conclusion is found, the reasoner knows what data is needed to form this conclusion.
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The figure also shows that a different path (red) can be used to form the same conclusion.

If this second path can not be found by the reasoner, this means that there has been a fault

or shortcoming in the sensor data. To detect what exactly has gone wrong, the reasoner

could output all of the data that it would expect to need to be able to complete both paths.

Figure 5.18 shows an example of this.

Figuur 5.18: Output of expected sensor data

All the software has to do next is to compare the actual data with the expected values. If a

mismatch is found, this could indicate that a sensor is failing or just not able to detect that

piece of data at this time. This method of working can be ideal when no direct comparison

between values can be made. For instance a comparison between a pressure sensor and

a light sensor directly makes no sense because there is no relation between both of them.

However if they share a common conclusion, there is a possibility to detect which of the

two is failing. This is a perfect example of the usefulness of a multi-sensor environment.

When two sensor values can be compared directly to each other, a new problem arises.

If all goes well and both sensors agree, the rules using both values will pass and the

conclusion will be formed. The problems begin when there is no match between the data

from the sensors, because which sensor will be trustworthy? The answer to this problem

is once again the data that has been deduced earlier. As an example, a comparison is

made between the ambient light sensor and the camera. The light intensity is a dynamic

value which reads differently over time. This is why no hard boundaries for each sensor

can be defined, since the ambient light rises and drops during the course of the day under

influence of the sun. This comparison can be seen in figure 5.19.
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Figuur 5.19: Comparing two sensor values in order to try and pick the correct one

If the system detects that the values from two sensors do not match, it will send out a

warning to have the mismatch checked. Of course the system will be flawed until the

mismatch is checked and corrected by a technician, this could prove costly. To deal with

this problem, the injection of data from different rules can once again aid to find a solution.

Once the warning is detected, the system will try to match earlier deduced data to the

situation at hand. In this example, as can be seen in figure 5.20, the reasoner will use

information about the reliability of the camera that it has deduced while detecting the

position of a person in the room.

Figuur 5.20: Detecting the failing sensor using different data

The system could now choose to ignore the failing sensor if necessary, and continue working

until the failing sensor has been addressed by a technician.
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5.2.7 Adjusting sensors based on previous input

A detection system can only be as strong as its weakest link. Knowing this, it is obvious

that all sensors should be performing at their highest possible level. As some sensors are

dynamic in their use, like the Kinect camera, it is important to configure them as good as

possible. As shown in figure 5.6, the system is able to detect if a room is lit or not. As

the Kinect camera can not see RGB images in darkness, it has to be told to switch to IR

imaging when the situation demands it. As the system has already deduced if the room is

lit or dark, this information can now be recycled once again to tell the sensor to behave

differently. Figure 5.21 shows that the reasoner’s output can be used to make the system

perform better, without adding sensors.

Figuur 5.21: Controlling how sensors react to their environment using deduced data

The real value of this, is that processing time can be won when a system would otherwise

have to fail first and then correct itself. If the system already knows the room is dark, the

camera will not have to try RGB images first, since it knows that will never work.

5.3 Reporting

The reporting module is designed to catch the output of the reasoning module. It has the

ability to output data to a GUI, save the deduced facts to the hard drive or save the data

in the system’s memory for fast reuse. Since the deduced facts contain information about
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a patient, it can be useful in the future to relay that information to a family member or a

caretaker of choice in certain scenarios.

The EYE Reasoner outputs all the data it has gotten in the first place, with newly deduced

data added to it. The output module has the ability to save the entire stream to a file for

later use or separate the new data from the old and save only the new data. For on-screen

use, only the person’s activities, sensor errors and warnings are brought to the GUI to

improve readability.
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Results

The end result of this study is a multi sensor semantic reasoner designed to be implemented

in a smart home. It uses rules to define what a person is doing or what types of actions

are going on in the smart home. The reasoning module has proven to be fast and reliable,

even if reasoning needs to be done with only a few input values. The use of EYE was

clearly the correct choice as Jena would have been much slower, looking at testing, thus

negatively affecting battery life and usability. The reasoner has the ability to warn if a

sensor has been malfunctioning, adding to the reliability of the entire system.

The output module has been kept fairly simple, as really implementing a warning system

is something specific for every application. There is however a list of warnings and actions

ready for use in any way required.

This application is capable of running on its own. The only problem with the application

as it is right now, is the fact that furniture is movable. This problem will be addressed in

the future work section.



FUTURE WORK AND CONCLUSION 61

Hoofdstuk 7

Future work and conclusion

The biggest issue in healthcare is the cost of maintaining a single patient. A single patient

takes up expensive space in a retirement home or hospital, needs attention from caretakers

and often does not feel like leaving his own trusted environment. Placing a person in a

retirement home is a step that most will try to postpone as much as possible, even if this

means that they are putting themselves in danger. Although not every patient can be

placed in a smart home, this system does offer a start to a solution that one day could

be implemented for certain types of patients. The smart home designed by Haerinck [4],

Houdmont [5] and Huyghe provides a controlled environment that makes it possible for

some patients to live without assistance from a caretaker without big concerns about health

and safety. The main target group for this study will be the elderly who are still mobile

to some extent, not the sick or severely injured.

The smart home tackles the problems of everyday healthcare by keeping an eye on the

patient in a non-intrusive way. The system is able to detect certain activities using sensors

and a reasoner and reports if needed to a caretaker for further assistance. The system

is designed to relieve a caretaker from his tasks as a guardian by automatically detecting

when a person is in distress, not to take over the actual healthcare. The system can be

implemented in an existing home if a patient would chose to do so, thus cutting back on

the costs of renting a room in a retirement home.

The next big step in designing the smart home, would be to make the system self learning.

Based on the sensor data, it could try to keep track of the living patterns of a human, and

try to detect if someone has deviated from his normal path in such a way, that it could

be a health risk. For instance, when the patient goes to sleep between 10 and 11 pm for a



FUTURE WORK AND CONCLUSION 62

long period of time, the machine could track this behavior using a support vector machine.

The machine will learn that this is normal, when all of a sudden the patient isn’t in bed

by 2 am, the machine will pick this up and could signal this to one of the caretakers if

deemed necessary.

This type of pattern recognition could also be used with people suffering from dementia, to

protect them from making the wrong mistakes and letting the machine take action before

the situation gets out of hand. Although the smart home was originally designed not to

intervene in a patient’s private atmosphere, it could one day save a person’s life. This type

of intervention will always be a touchy subject, because it could scare or confuse people,

but in some cases it is definitely worth considering.

Another useful type of machine learning that could be added to a smart home, is to register

and log movements and adjust sensor data with it. As the reasoning module is set up right

now, it looks at a patient as if it was a moveable object, the only one in the room. In real

life, chairs and beds are moveable objects too, with their own position and status. If the

sensors could track a person and learn that he has been sitting at a certain place, combining

that with the seat’s sensor registering that someone is seated, the machine could learn that

the seat is indeed at that location. If the location changes due to someone moving the

seat, the sensor data would not match and would generate contaminated data if no further

action is taken. If the system would be capable to adjust the location of the seat, based

on where a person has been sitting and triggering the seat’s sensor, the system could learn

that the seat has just moved instead of generating errors or cause illusive warnings. This

would add to the user experience by causing fewer interventions from caretakers or the

system itself due to the higher accuracy.
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Bijlage A

Appendix A - Belstat statistics

Figuur A.1: Age pyramid for Belgium
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Figuur A.2: Population aged over 100 years in Belgium

Figuur A.3: Number of households without an income in Belgium

Figuur A.4: Population by employment rate in Belgium
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Bijlage B

Appendix B - Code and Rule

snippets

Figuur B.1: Rule to calculate the average position of a person in the room
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